Statistical cosymplectic manifolds and their submanifolds
نویسندگان
چکیده مقاله:
In this paper, we introduce statistical cosymplectic manifolds and investigate some properties of their tensors. We define invariant and anti-invariant submanifolds and study invariant submanifolds with normal and tangent structure vector fields. We prove that an invariant submanifold of a statistical cosymplectic manifold with tangent structure vector field is a cosymplectic and minimal-like submanifold. And if the structure vector filed be normal then that is a statistical Keahler-like manifold. Moreover, we construct a non-trivial example to illustrate some results of the paper.
منابع مشابه
Warped product submanifolds of cosymplectic manifolds
Cosymplectic manifolds provide a natural setting for time dependent mechanical systems as they are locally product of a Kaehler manifold and a one dimensional manifold. Thus study of warped product submanifolds of cosymplectic manifolds is significant. In this paper we have proved results on the non-existence of warped product submanifolds of certain types in cosymplectic manifolds. M.S.C. 2000...
متن کاملWarped Product Cr-submanifolds of Lp-cosymplectic Manifolds
In this paper, we study warped product CR-submanifolds of LP-cosymplectic manifolds. We have shown that the warped product of the type M = NT × fN⊥ does not exist, where NT and N⊥ are invariant and anti-invariant submanifolds of an LP-cosymplectic manifold M̄ , respectively. Also, we have obtained a characterization result for a CR-submanifold to be locally a CRwarped product.
متن کاملK-Cosymplectic manifolds
In this paper we study K-cosymplectic manifolds, i.e., smooth cosymplectic manifolds for which the Reeb field is Killing with respect to some Riemannian metric. These structures generalize coKähler structures, in the same way as K-contact structures generalize Sasakian structures. In analogy to the contact case, we distinguish between (quasi-)regular and irregular structures; in the regular cas...
متن کاملA Geometric Inequality for Warped Product Semi-slant Submanifolds of Nearly Cosymplectic Manifolds
Recently, we have shown that there do not exist warped product semi-slant submanifolds of cosymplectic manifolds [K.A. Khan, V.A. Khan and Siraj Uddin, Balkan J. Geom. Appl. 13 (2008), 55–65]. The nearly cosymplectic structure generalizes the cosymplectic one. Therefore the nearly Kaehler structure generalizes the Kaehler structure in almost Hermitian setting. It is interesting that the warped ...
متن کاملInequality for Ricci curvature of certain submanifolds in locally conformal almost cosymplectic manifolds
Let M̃ be a (2m+ 1)-dimensional almost contact manifold with almost contact structure (φ,ξ,η), that is, a global vector field ξ, a (1,1) tensor field φ, and a 1-form η on M̃ such that φ2X =−X +η(X)ξ, η(ξ) = 1 for any vector field X on M̃. We consider a product manifold M̃×R, whereR denotes a real line. Then a vector field on M̃×R is given by (X , f (d/dt)), where X is a vector field tangent to M̃, t ...
متن کاملSlant submanifolds with prescribed scalar curvature into cosymplectic space form
In this paper, we have proved that locally there exist infinitely many three dimensional slant submanifolds with prescribed scalar curvature into cosymplectic space form M 5 (c) with c ∈ {−4, 4}while there does not exist flat minimal proper slant surface in M 5 (c) with c 6= 0. In section 5, we have established an inequality between mean curvature and sectional curvature of the subamnifold and ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 2
صفحات 0- 0
تاریخ انتشار 2022-05
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023